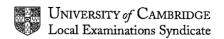
CAMBRIDGE
INTERNATIONAL EXAMINATIONS

NOVEMBER 2002


GCE Advanced Level

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT:9701/6

CHEMISTRY (OPTIONS (A2))

•		3.
Page 1	Mark Scheme	Syli
	A Level Examinations – November 2002	970

Biochemistry

- 1. (a) (i)
- and $\frac{cH_{2}\sigma H}{c}$

(ii) Chiral / anomeric / optically active centre is created since rotation is possible at C₁ (1) [3]

(2 x 1)

(b) Hydrogen bonding (1)

(c) (i) glucose + ATP => glucose-6-phosphate + ADP (1)

an enzyme / hexokinase / glucokinase is needed (1)

- (iii) Glucose-6-phosphate is a competitive/reversible inhibitor (1)
 - It fits into the active site on the enzyme/similar shape to glucose (1) [5]

		2
Page 2	Mark Scheme	Syll
	A Level Examinations – November 2002	9701

2. (a) (i) vate

Viax

Viax

(ii) competitive inhibitor

(appreached Vinux)

Axes labelled

Graph

Vinux and Vinux / 2 indicated

(i) cofactor

(ii) competitive inhibitor

(appreached Vinux)

(iii) competitive inhibitor

(iii) competitive inhibito

(iii) The value of K_m shows the efficiency / effectiveness of the enzyme / affinity of the enzyme for the substrate / strength of the enzyme-substrate

(ii) Check lines on sketch above for $V_{\text{max}}/2$ to give K_{m} as [S]

bond (1)

Small values for K_m indicate very efficient systems (1) [6]

(b) (i) Correct line on sketch (1)

Competes for active sites on the enzyme (1)

(ii) Correct line on sketch (1)

Increase the efficiency of the enzyme (1)

[4]

(1)

Page 3	Mark Scheme	Sylv 32 er
	A Level Examinations – November 2002	970

Environmental Chemistry

3.	(a)	Increased use of fertilsers	(1)
		Leaching / runoff of soluble compounds such as nitrates	(1)
		This increases the growth of algae	(1)
		When these die and decay they use up dissolved oxygen / eutrophicati	ion (1) [4]
	(b)	Water from the Baltic is less dense due to lower salinity and higher temperatures (both required)	(1)
	(c)	Nutrient levels are greatest in the North Sea water in which the algae grow	(1)
		The 'jump' layer is not as mobile as the surface waters / little or no mix	ing (1) [2]
	(d)	The algal decomposition mainly affects the deeper waters reducing the content	e oxygen (1)
		Oxygen loss is less significant at the surface	(1)
		The smaller the cod populations, the fewer herrings are eaten	(1)
		Cod are found at greater depths where the oxygen loss is greatest	(1) [max 2
	(e)	This shows severely reducing conditions / a large oxygen loss.	(1)

		2
Page 4	Mark Scheme	Syl. 2 per
	A Level Examinations – November 2002	970

Lack of flammability / inertness to combustion 4. (a) Suitable volatility / easily liquefied Lack of reactivity towards other chemicals present Non-toxic [max 2] (1) (b) CFCl₃ CFCl₂• (1) (1) CIO. (1) CI. is recycled, and can thus destroy many ozone molecules [4] (1) It breaks down more easily (c) (ii) CFC-11 must have a shorter residence time than CFC-12 (1) (1) CFC-12 must have a very long residence time (> 100 years) [max 2] (1) HCFCs are more readily destroyed in the troposphere (d) The C—H bond is more readily attacked, and this promotes the

breakdown of the molecule

Polarisation of the C-H bond

(1)

(1) [max 2]

		4.
Page 5	Mark Scheme	Sy. 2 per
	A Level Examinations – November 2002	970

Phase Equilibria

5. (a) As the molecules gain energy

(1)

the forces between them become much weaker

(1)

The magnitude of the change is proportional to ΔH_{vap}

(1) [max 2]

(b) (i) H₂O has a high b.p. due to hydrogen bonding

- (1)
- Diagram of water showing 2 H-bonds per molecule
- (1)
- H₂S to H₂Te have similar intermolecular dipole-dipole forces / van der Waals'
- (1)

- (ii) H_2O : $\frac{40.7}{272}$ = 0.109
- $H_2S: \frac{18.7}{213} = 0.088$
- H_2 Se: $\frac{19.3}{243} = 0.079$
- H_2 Te : 23.2 = 0.087
- Four values (1)
- For similar bonding, b.p. and ΔH_{vap} are proportional
- (1)
- Water has a higher ratio due to different / stronger hydrogen bonding(1) [max 5]
- (c) (i) $P = P_A \times X_A$
 - The vapour pressure exerted by a gas is proportional to its mole fraction
- (1)
- (ii) Law holds only for similar intermolecular forces / H₂S and H₂Se both have van der Waals' forces (1)
 - H₂O and H₂S have different forces

(1) [3]

•		3.
Page 6	Mark Scheme	Sylla
	A Level Examinations – November 2002	9701

age com

6. (a) (i) Partition coefficient =
$$X_{\text{solven 1}}$$
 [X]_{solvent 2} (1)

(ii)
$$K = \frac{1.0 \times 10^{-2}}{4.0 \times 10^{-3}} = 2.5$$
 (1)

(iii) Let x mol of iodine be dissolved by the solvent

Then
$$(4.0 \times 10^{-4} - x)$$
 mol I_2 remain in 100 cm³ water (1)

And x mol
$$I_2$$
 are present in 50 cm³ of solvent (1)

$$2.5 = [Concn in solvent] = \frac{20x}{10 (4.0 \times 10^{4} - x)}$$
 (1)

This gives
$$20x = 25 (4.0 \times 10^{-4} - x)$$

 $45x = 10^{-2}$
 $x = 2.2 \times 10^{-4} \text{ mol}$ (1)

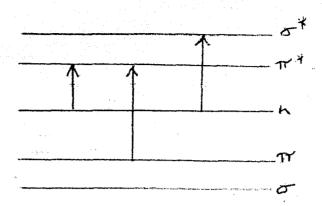
Hence the concn of $\rm I_2$ in the solvent is 20 x 2.2 x $\rm 10^{-4}$ mol dm $^{-3}$

or
$$4.4 \times 10^{-3} \text{ mol dm}^{-3}$$
 (1) [max 6]

(b) (i) The solubility of a gas in a liquid is proportional to the (partial) pressure of the gas (1)

(ii) Solubility of
$$N_2 = 0.79 \times 23.6 = 18.6 \text{ cm}^3 \text{ dm}^{-3}$$
 (1)

Solubility of
$$O_2 = 0.20 \times 48.9 = 9.8 \text{ cm}^3 \text{ dm}^{-3}$$
 (1)

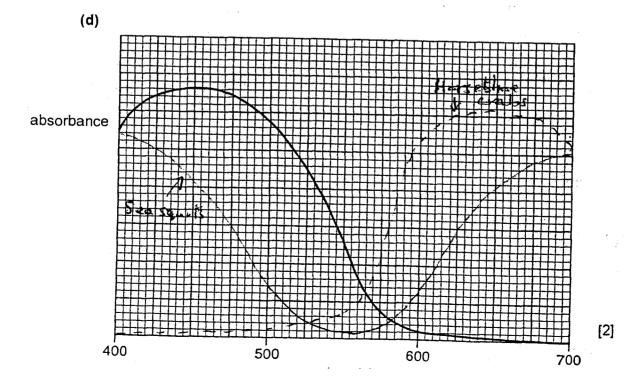

(iii) %
$$N_2$$
 is $18.6 \times 18.6 = 65.5\%$

And hence
$$\% O_2 = 34.5\%$$
 (1) [4]

	·	-4	
Page 7	Mark Scheme	Sy	2 per
	A Level Examinations – November 2002	970	· A
	· · · · · · · · · · · · · · · · · · ·		

Spectroscopy

7. (a)


-1 for every line over 3 (3 x 1) [3]

-1 for every incorrect over 2

- (c) (i) Diphenylmethanone will absorb at lower energy (longer wavelength) (1)
 - (ii) Energy levels are closer together (1)

hence less energy is required for transitions (1) (allow longer chromophore / greater delocalisation / conjugation)

[3]

Page 8	Mark Scheme	Sv	per
i age o	A Level Examinations – November 2002	970	7.D.

ο.	(a)	(1)	A suspension of an organic solid		(1)
			in a hydrocarbon oil / Nujol		(1)
	-	(11)	Ethanol shows a strong IR absorption due to -OH		(1)
			It absorbs water which would attack the NaCl plates	··· .	(1) [max 3]

Or ester isomers of the above, NOT –OH / -NH₂ containing isomers(1) [3]

(c) (i) Peak is at
$$M - 15$$
, hence CH_3 has been lost (1)

(ii) T to U is a loss of 30, suggests loss of
$$CH_2O$$
 or $-CH_2NH_2$ (1)

(iii) Ratio of M: M+1 gives
$$n = 0.11 \times 100$$
 or 4 carbons (1)

If **K** is saturated, it will contain 8 hydrogens
$$(C_4H_8O_x)$$
 (1)

This leaves a mass of 32 for the oxygen

Hence
$$\mathbf{K}$$
 is $C_4H_8O_2$ (1) [max 4]

				12.	
Page 9	Mark Scheme		Syl	20	per
	A Level Examinations – Nove	mber 2002	970	8	

de com

Transition Elements

9. (a) Labelled diagram is acceptable

Impure copper anode, pure copper cathode	(1)
Copper is transferred to the cathode (or equations)	(1)
CuSO ₄ (aq) is the electrolyte	(1)
Silver settles as the metal in the anode sludge	(1)
Because E° is more +ve than Cu ²⁺	(1)
Ni / Zn goes into solution as M ²⁺	(1)
Because their E° is more negative than Cu ²⁺	(1) [max6]

(b) (i) Brass, with zinc; bronze, with tin etc (1)

(ii) moles of
$$S_2O_3^{2-} = 0.1 \times 20/1000 = 2 \times 10^{-3} \text{ mol}$$
 (1)

moles of
$$I_2$$
 = 1 x 10⁻³
moles of Cu^{2+} = 2 x 10⁻³ (1)

Mass of copper =
$$63.5 \times 2 \times 10^{-3} \text{ g}$$

= 0.127 g

Page 10	Mark Scheme	W.	Paper
	A Level Examinations – November 2002	9	0

10. (a) [Ar]3d⁴

[1]

Mn(III) red

Mn(VI) green

Mn(VII) purple

4 correct, 3 marks 3 correct, 2 marks etc

[3]

(c) (i) From Data Book:
$$4MnO_4^2 - 4e^2 => 4MnO_4^2 E^2 = 0.56V$$
 (1)

$$5MnO_4^2 + 8H^+ => Mn^{2+} + 4MnO_4 + 4H_2O$$
 (1)

$$E^{\circ}_{cell} = +1.74 - 0.56 = +1.18V$$
 (1)

(ii) Oxidation no =
$$+5$$
 (1)

$$8H^{+} + 3MnO_{4}^{3-} => 2MnO_{2} + MnO_{4}^{-} + 4H_{2}O$$
(1 for correct formulae, 1 for balancing)(2)
[6]